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Abstract

Abnormal activation of the RhoA/Rho kinase (ROCK) pathway plays a pivotal role in neuroinflammatory and pro-oxidative responses, axonal 
retraction, and apoptosis. We observed increased expression of RhoA, ROCK II, and ROCK activity in the brain of aged rats, particularly in the 
substantia nigra. Increased ROCK activity may enhance major mechanisms responsible for aging-related neurodegeneration, thus representing a 
major factor in the vulnerability of dopaminergic neurons to damage. We also observed that physical exercise decreased ROCK activation in aged 
rats. This suggests that decreased ROCK activation plays an important role in the neuroprotective effects of exercise observed in several previous 
studies. Furthermore, the present results suggest that ROCK inhibitors may constitute an effective neuroprotective strategy against aging-related 
risk of dopaminergic degeneration and possibly against other aging-related neurodegenerative processes.
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Aging is one of the most significant risk factors for the development 
of neurodegenerative diseases such as Parkinson’s disease (PD) as 
a result of the increased vulnerability of neurons to damage (1,2). 
Several studies involving different tissues have shown that normal 
aging is associated with a proinflammatory, pro-oxidant state that 
may favor an exaggerated response to injury and degenerative dis-
eases (3). Aged brains show a decreased ability to rescue damaged 
neurons and terminals or to be reinnervated by grafted neurons, 
which is generally related to the existence of a hostile environment 
in the aged brain (4). The mechanisms involved in creating this hos-
tile environment are largely unknown. However, some of the mecha-
nisms are counteracted by appropriate neuroprotective therapies or 
by physical exercise (5–7). To intervene in brain aging, we must first 
identify major factors that underlie it.

Abnormal activation of the RhoA/Rho kinase (ROCK) pathway 
has been observed in animal models of several brain diseases (8). It 
has been shown that ROCK plays a pivotal role in the microglial 

neuroinflammatory response (9,10), and neuroinflammation plays a 
major role in the above-mentioned diseases (11), and in aging-related 
vulnerability of neurons to degeneration (1,3) and aging-related 
decrease in ability to rescue damaged neurons (12). ROCK activation 
is involved in axonal collapse and retraction, and ROCK inhibition 
may induce therapeutic effects by axon-stabilizing functions and pro-
motion of neurite outgrowth (13). ROCK inhibition has also been 
observed to induce antiapoptotic effects and to have a beneficial influ-
ence on neuron survival (14). In Parkinson’s disease models, recent 
studies carried out in our and other laboratories have shown increased 
levels of ROCK activity in the substantia nigra compared to normal 
controls not treated with dopaminergic neurotoxins, and that ROCK 
inhibition protects against dopaminergic neuron death and axonal 
retraction induced by dopaminergic neurotoxins (15). However, it is 
not known whether ROCK activation is enhanced in the brain (and 
the nigral region in particular) of aged animals, which could mediate 
the aging-related higher neuron vulnerability to damage, or whether 
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ROCK inhibition is involved in the beneficial effects of physical 
exercise.

Methods

Male adult Sprague-Dawley rats were divided into two groups. Rats 
in group A were young adults (3 months old; n  = 7) and rats in 
group B were aged rats (18 months old; n = 14). The rats in group 
B were randomly assigned to exercise (treadmill running; n = 7) or 
no exercise (n = 7) subgroups. Nonexercised rats in groups A and 
B were subjected to the same handling than exercised rats except 
running during the 4-week training period (see later). A  straight 
2-lane treadmill (14 cm wide, 50 cm long) connected to a personal 
computer for system control and data management (CT-2 tread-
mill system, Columbus Instruments) was used for exercise. During 
a 2-day pretraining period (30 minutes/day at 6–10 m/min), rats 
that failed to complete the exercise session (ie, nonrunners) were 
excluded from the study (16). Then the exercised rats were trained 
to run on the treadmill over 4 consecutive weeks (one 30-min ses-
sion per day at 17 m/min, 5 days a week). Forty-eight hours after 
the last exercise session, exercised and nonexercised rats were killed 
and the area of the substantia nigra in the right and left ventral 
mesencephalon was dissected and processed for Western blot, real-
time quantitative reverse-transcription polymerase chain reaction, 
and ROCK activity. All experiments were carried out in accord-
ance with Directive 2010/63/EU and Directive 86/609/EEC and 
were approved by the corresponding committee at the University of 
Santiago de Compostela.

For Western blot, tissue was homogenized, processed, and 
transferred to nitrocellulose membranes, which were incubated 
overnight with primary antibodies against RhoA (1:200; sc-179) 
and ROCK II (1:200; sc-1851) from Santa Cruz Biotechnology. 
The HRP-conjugated secondary antibodies used were goat anti-
rabbit (PI32460, Thermo Scientific and Protein G (18–161, 
Upstate-Millipore). Blots were stripped and reprobed for anti-
GAPDH (G9545, Sigma; 1:25000) as a loading control. The 
data were then expressed relative to the value obtained for the 
control young rats (100%) to counteract possible variability 
among batches (see (9) for details). The relative levels of RhoA 
and ROCK II messenger RNA (mRNA) were examined by real-
time polymerase chain reaction. β-Actin was used as a housekeep-
ing gene and was amplified in parallel with the genes of interest. 
The data were evaluated by the delta–delta Ct method (2−ΔΔCt), 
where Ct is the cycle threshold. Gene expression was determined 
relative to that of the housekeeping transcripts. For each gene 
forward (F) and reverse (R) primers were designed using Beacon 
Designer software (Bio-Rad; see (9) for details). ROCK (ROCK 
II) activity was measured using a ROCK Activity Assay kit (Cell 
Biolabs, San Diego, CA) according to the manufacturer’s instruc-
tions. Each sample was assayed in duplicate, and phosphoryla-
tion activity was assessed by measuring the absorbance at 450 nm 
in an Infinite M200 multiwell plate reader (TECAN) (see (9) for 
details).

All data were obtained from at least three independent experiments 
and were expressed as means ± SEM. Multiple comparisons were ana-
lyzed by one-way analysis of variance followed by a post hoc Holm 
Sidak test. The normality of populations and homogeneity of variances 
were tested before each analysis of variance. Differences were consid-
ered significant at p < .05. Statistical analyses were carried out with 
SigmaStat 3.0 software from Jandel Scientific (San Rafael, CA).

Results

The Western blot studies revealed significantly higher expression of 
RhoA and ROCK II protein in aged sedentary rats than in young 
sedentary rats. However, in aged exercised rats, RhoA and ROCK 
II protein levels were significantly lower than in aged sedentary rats 
(Figure 1A and B). Aging also induced significant increases in RhoA 
and ROCK II mRNA levels in the ventral midbrain (ie, nigral region) 
of aged sedentary rats relative to the RhoA and ROCK II mRNA 
levels in young rats. RhoA and ROCK II mRNA levels were sig-
nificantly lower in aged exercised rats than in aged sedentary rats 
(Figure 1C and D). Finally, ROCK activity was significantly higher in 
the nigral region of aged sedentary rats than in young sedentary rats. 
However, ROCK activity was significantly lower in aged exercised 
rats than in aged sedentary rats (Figure 1E).

Discussion

The study results show increased ROCK activity in the brain of aged 
rats, particularly in the substantia nigra region. Increased ROCK 
activity may enhance major mechanisms responsible for aging-
related neurodegeneration (such as abnormal neuroinflammatory 
and pro-oxidative responses, axonal retraction, and apoptosis) and 
may thus be an important factor in the greater vulnerability of aged 
brain neurons to damage. Interestingly, we also observed that physi-
cal exercise decreased ROCK activation in aged rats. Such a decrease 
in ROCK activation may contribute to the neuroprotective effects of 
exercise observed in a number of previous studies.

It is known that ROCK is present in neurons and different types 
of glial cells. However, several studies have shown that ROCK is 
predominantly expressed in microglia as compared with neu-
rons and other glial cells (9,17). We also observed that activation 
of microglial ROCK play a major role in neuroinflammation and 
dopaminergic neurodegeneration, and that inhibition of microglial 
ROCK plays a crucial role in the neuroprotective effects of ROCK 
inhibitors on dopaminergic neurons (9,15,18). Altogether suggests 
that the increase in ROCK activity observed in the present study in 
aged rats is mostly related to microglial ROCK activation. Several 
mechanisms appear to be involved in ROCK-induced neuron vulner-
ability and the neuroprotective effects induced by ROCK inhibitors 
(for review see (15). Microglial ROCK has been shown to play a cru-
cial role in these effects (9,18). In the central nervous system, activa-
tion of microglial ROCK mediates at least three major components 
of the microglial inflammatory response. First, RhoA/ROCK is an 
important regulator of the actin cytoskeleton, which is particularly 
important for microglial migration and several changes involved in 
phagocytosis (9,19). Second, ROCK interacts with NADPH-oxidase 
(10) and ROCK inhibitors suppress activation of NADPH-oxidase 
(20). In microglia and other inflammatory cells, NADPH-oxidase 
produces high concentrations of reactive oxygen species that are 
released extracellularly (21). Finally, ROCK enhances microglial 
release of inflammatory cytokines such as interleukin-β and tumor 
necrosis factor-α (22,23). In neurons, ROCK activation has also 
been shown to be involved in axonal collapse and retraction in the 
presence of inhibitory conditions, through modulation of the myosin 
light chain, phosphorylation of LIM kinase, and other mechanisms 
(13,24). The axon-stabilizing effect of ROCK inhibition in damaged 
neurons has also been suggested as a mechanism of neuronal pro-
tection (24), and this has recently been confirmed in dopaminergic 
neurons (18,25). It has also been suggested that ROCK inhibition 
activates neuroprotective survival cascades in dopaminergic neurons 
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(25). A  number of potential ROCK targets in apoptotic signaling 
have been suggested (14).

Several previous studies have revealed that physical exercise 
attenuates the aging-related decline in brain function (5,26). Exercise 
may act through multiple mechanisms, such as by enhancing the lev-
els of several neurotrophic factors (6,7). However, decreased oxida-
tive stress and inflammation (27,28) and antiapoptotic effects (29) 
have also been reported as major mechanisms responsible for the 
neuroprotective effects induced by exercise. Inhibition of the aging-
related increase in ROCK activity may play a major role the anti-
inflammatory, antioxidant, and antiapoptotic effects involved in 
neuroprotection by exercise. In conclusion, the present findings indi-
cate that the age-related increase in ROCK activity observed in the 
substantia nigra of rats may be involved in the aging-related increase 
in vulnerability of dopaminergic neurons to damage, and that this can 
be attenuated by physical exercise. Furthermore, the present results 
suggest that ROCK inhibitors may constitute an effective neuropro-
tective strategy against the aging-related risk of dopaminergic degen-
eration and possibly other aging-related neurodegenerative processes.
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